

# An Economic Evaluation of the Parent– Child Assistance Program (P-CAP) for Preventing Fetal Alcohol Spectrum Disorder in Alberta, Canada

Thanh et al. 2013

Presented at the First International Conference on Prevention of FASD, Edmonton, Alberta, Canada, September 23-25, 2013

- P-CAP is a three-year home-visitation/casemanagement/harm reduction mentorship intervention model.
- Initiated in 1991 by a research team at the University of Washington.
- Serves women who abuse substances (e.g. alcohol and/or drugs) and are pregnant or up to six months post-delivery.

#### The goals of P-CAP are to:

- prevent subsequent alcohol and drug-exposed births by encouraging the use of effective contraceptives and helping women decrease their use of alcohol and drugs or abstain completely from them
- address the health and social wellbeing of the mothers and their children by increasing employment and reducing their dependency on welfare income

- The P-CAP model has been replicated at many other locations in North America
- In Alberta: P-CAP models have been applied with different names:
  - "First Steps" in 1999 (by Catholic Social Services,
     Bissell Center, and Lethbridge),
  - "P-CAP" in 2000 (by McMan, Calgary), and
  - "Mothers to be Mentorship Program" in 2001 (by Lakeland Center for FASD, Cold Lake)

- In 2003, the Alberta FASD Cross-Ministry Committee (FASD-CMC) was established to plan and deliver provincial government programs and services associated with FASD.
- The FASD Service Networks were established to provide diagnostic, supportive, and preventive services.
- P-CAP is one of the preventive services provided by the networks since 2008.
- There are currently 25 P-CAP programs across the province.
- Between 2008 and 2011, there have been 366 P-CAP clients served by the networks

## Objectives

- Ernst et al. (1999), Grant et al. (2005), and Rasmussen et al. (2012) demonstrated the P-CAP to be effective.
- However, neither the original P-CAP program nor its replications have ever been evaluated in an economic perspective.
- This study aims to economically evaluate (both the cost-effectiveness and cost-benefit analyses) the Alberta FASD-CMC funded P-CAP

## Methods

- A decision analytic modeling technique to compare costs and outcomes of 2 options:
  - P-CAP exists
  - P-CAP did not exist
- Cost-effectiveness analysis to estimate the incremental cost per prevented case.
- Cost-benefit analysis to estimate the net monetary benefit of the P-CAP program
  - the number of prevented cases was monetized to compare with the actual cost of P-CAP

## Methods

- Study population: 366 women, who have been served by the Alberta FASD-CMC P-CAP from 2008 to 2011.
  - Only the alcohol users, who accounted for 44% of the total (95% CI: 29% to 60%) were included in the analysis
    - drug users were not included
- Time horizon: 3 years
  - the estimated costs and benefits occur within a 3-year period



#### Model structure



#### Model structure for option 1: P-CAP exists

Women with heavy alcohol consumption entering P-CAP:

- Stay for 3 years or quit.
- Pregnant at intake or not (e.g. post-delivery <=6 months).</li>
- Subsequent pregnancy or not
- Those who are in the 2<sup>nd</sup> and 3<sup>rd</sup> trimesters of pregnancy at intake and those who are not pregnant at intake, the impact of P-CAP is only on the subsequent pregnancies if they have one.
- Only the 1<sup>st</sup> subsequent pregnancy was included because very few had more than 1 in the 3-year time.

#### Model structure for option 1: P-CAP exists

- Those who are in the 1<sup>st</sup> trimester of pregnancy at intake and if they have a subsequent pregnancy, the impact of P-CAP is on both pregnancies.
- Pregnant women: live births or not
- Live births: FASD or not.
- The impact of P-CAP includes:
  - a reduction and abstinence from alcohol.
  - a reduced rate of subsequent pregnancy.
    - due to the increased use of contraceptives.
  - -> result in a reduction of live births exposed to heavy alcohol consumption during pregnancy, and therefore in a reduction of the number of FASD cases



### Model structure for option 2 (P-CAP did not exist):

similar to option 1, except there is no impact of P-CAP -> results in:

- A higher rate of subsequent pregnancy (due to lower use of contraceptives)
- All the live births exposed to heavy alcohol consumption during pregnancy, thus resulting in more FASD cases.



## Model inputs

- The actual data from the Alberta's FASD service networks.
- Systematic review of the literature and a meta-analysis to pool the inputs if the actual data is not available.

| Variable Name | Description                | Mean | Low  | High | Data sources        |
|---------------|----------------------------|------|------|------|---------------------|
| pStay         |                            |      |      |      | (Alberta FASD       |
|               | Probability of women       |      |      |      | Service Networks    |
|               | who stay in P-CAP          | 0.91 | 0.87 | 0.94 | 2012)               |
| pAlcohol      | Probability of alcohol use |      |      |      |                     |
|               | among P-CAP women          | 0.44 | 0.29 | 0.60 | (Pelech et al 2013) |
| pPregnant     |                            |      |      |      | (Alberta FASD       |
|               | Probability of pregnancy   |      |      |      | Service Networks    |
|               | at intake                  | 0.49 | 0.43 | 0.55 | 2012)               |
| pFirst        | Probability of pregnancy   |      |      |      |                     |
|               | in the first trimester at  |      |      |      |                     |
|               | intake                     | 0.16 | 0.07 | 0.29 | (Pelech et al 2013) |
| pLivebirth    |                            |      |      |      | (Alberta FASD       |
|               | Probability of giving live |      |      |      | Service Networks    |
|               | births                     | 0.87 | 0.80 | 0.92 | 2012)               |

# Model inputs

| Variable Name    | Description                                                   | Mean | Low  | High | Data sources                                                                                                                                  |
|------------------|---------------------------------------------------------------|------|------|------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| pReduce          | Probability of women who reduce alcohol use due to P-CAP      | 0.64 | 0.58 | 0.70 | (Alberta FASD<br>Service Networks<br>2012)                                                                                                    |
| pAbstinence      | Probability of women who abstinence from alcohol due to P-CAP | 0.11 | 0.08 | 0.16 | (Alberta FASD<br>Service Networks<br>2012)                                                                                                    |
| pBecomePregnant  | Probability of subsequent pregnancy if P-CAP exists           | 0.29 | 0.18 | 0.41 | Rasmussen et al<br>2012                                                                                                                       |
| pBecomePregnant2 | Probability of subsequent pregnancy if P-CAP did not exist    | 0.42 | 0.29 | 0.54 | Rasmussen et al<br>2012                                                                                                                       |
| pHeavyFASD       | Probability of FASD among heavily exposed to                  | 0.60 | 0.54 | 0.84 | Auti-Ramo et al.<br>1992; Astley 2010;<br>Aronson et al.<br>1985; Auti-Ramo<br>2000; Kuehn et al.<br>2012; Godel et al.<br>2000; Kyllerman et |
|                  | alcohol during pregnancy                                      | 0.69 | 0.54 | 0.84 | al. 1985                                                                                                                                      |

# Model inputs

| Variable Name   | Description               | Mean    | Low     | High    | Data sources     |
|-----------------|---------------------------|---------|---------|---------|------------------|
| pReduceFASD     | Probability of FASD       |         |         |         |                  |
|                 | among reduced exposure    |         |         |         |                  |
|                 | to alcohol during         |         |         |         | Auti-Ramo et al. |
|                 | pregnancy                 | 0.15    | 0.06    | 0.30    | 1992             |
| pAbstinenceFASD | *Upper value of 95% CI of |         |         |         |                  |
|                 | probability of FASD       |         |         |         |                  |
|                 | among light exposure to   |         |         |         |                  |
|                 | alcohol during pregnancy  | 0.00    | 0.00    | 0.10*   | Godel et al 2000 |
| cFASD           | Incremental lifetime cost |         |         |         |                  |
|                 | per case with FASD        | 800,000 | 640,000 | 960,000 | Thanh et al 2011 |
| cP-CAP          | P-CAP cost per woman      |         |         |         | Alberta FASD-    |
|                 | over the 3 year period    | 20,755  | 16,604  | 24,906  | CMC 2013a,b      |

# Results

|                                          | Average      | Range                        |
|------------------------------------------|--------------|------------------------------|
| Number of prevented FASD cases           | 31           | 20 to 43                     |
| Incremental cost per prevented FASD case | \$102,000    | \$76,000 to \$161,000        |
| Net monetary benefit                     | \$22 million | \$13 million to \$30 million |

#### Sensitivity analysis: number of prevented FASD cases



# Sensitivity analysis: incremental cost per prevented FASD case



#### Sensitivity analysis: net monetary benefit



## Conclusion

- P-CAP is cost-effective and produces a significant net monetary benefit for Alberta.
- The increased use of contraceptives as a factor that has a significant impact on the outcomes.
- This finding supports placing a high priority not only on reducing alcohol use during pregnancy, but also on providing effective contraceptive measures when a program is launched.

### Contact

Thanh Nguyen, MD, MPH, PhD
Health economist
Institute of Health Economics
1200 10405 Jasper Avenue
Edmonton, Alberta, Canada, T5J 3N4

P: +1-780-4484881 (ext. 257)

F: +1-780-4480018

E: tnguyen@ihe.ca