Co-located, Integrated Community Specialists in Primary Care

Muhammad Y. Elrashidi, MD, MHA
Assistant Professor of Medicine
Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery Population Health Scholar

Institute of Health Economics – Innovation Forum XVII
Edmonton, Alberta, Canada
May 2, 2017
Overview

• Background Trends and Challenges
• Systematic Review / Meta-Analysis on Co-located Specialty Care in Primary Care Settings
• Mayo Clinic Integrated Community Specialist Model and Experience
Disclosures

- None
Rising Healthcare Costs – US

Growth in National Health Expenditures (NHE), Gross Domestic Product (GDP), and the Health Share of GDP, 1990-2024

Rising Healthcare Costs – Canada

Canadian Institute for Health Information. https://www.cihi.ca/en/nhex2016-topic6
Allocation of US Healthcare Spending

Distribution of National Health Expenditures, by Type of Service (in Billions), 2012 and 2023

2012 NHE Total Expenditures: $2,793.4 billion
- Hospital Care, $882.3 (31.6%)
- Other Health Spending, $433.0 (15.5%)
- Other Personal Health Care, $420.6 (15.1%)
- Prescription Drugs, $263.3 (9.4%)
- Nursing Care Facilities & Continuing Care Retirement Communities, $151.5 (5.4%)
- Physician & Clinical Services, $565.0 (20.2%)

Projected 2022 NHE Total Expenditures: $5,158.8 billion
- Hospital Care, $1,637.7 (31.7%)
- Other Health Spending, $799.1 (15.5%)
- Other Personal Health Care, $781.8 (15.2%)
- Prescription Drugs, $482.9 (9.4%)
- Nursing Care Facilities & Continuing Care Retirement Communities, $271.4 (5.3%)
- Physician & Clinical Services, $1,023.8 (19.8%)

Wasteful Healthcare Spending

Shift toward Value Based Payment

Better Care. Smarter Spending. Healthier People: Paying Providers for Value, Not Volume:
Shift toward Value Based Payment

Healthcare Costs Shifting to Patients

Cumulative Increases in Health Insurance Premiums, Workers’ Contributions to Premiums, Inflation, and Workers’ Earnings, 1999-2014

Increasing Population of Older Americans

Population age 65 and over and age 85 and over, selected years 1900–2008 and projected 2010–2050

NOTE: Data for 2010–2050 are projections of the population. Reference population: These data refer to the resident population. SOURCE: U.S. Census Bureau, Decennial Census, Population Estimates and Projections.

Administration on Aging http://www.aoa.acl.gov/Aging_Statistics/index.aspx
Increasing Burden of Disease

- Increasing burden of chronic & comorbid disease
- 117+ million Americans with at least one chronic disease (CDC, 2012)

Chronic Disease Overview. CDC. http://www.cdc.gov/chronicdisease/overview/
Costs due to Chronic Diseases

Patients Get Care from Multiple Providers

Table 1. Numbers of Providers Who Treated Medicare Beneficiaries in 2000.

<table>
<thead>
<tr>
<th>Beneficiary Group</th>
<th>No. of Beneficiaries (%)</th>
<th>Total Physicians</th>
<th></th>
<th>No. of Unique Providers</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>median</td>
<td>IQR</td>
<td>median</td>
<td>IQR</td>
<td>median</td>
<td>IQR</td>
<td>median</td>
<td>IQR</td>
</tr>
<tr>
<td>All beneficiaries</td>
<td>1,787,454 (100)</td>
<td>7</td>
<td>4–11</td>
<td>2</td>
<td>1–4</td>
<td>5</td>
<td>2–8</td>
<td>4</td>
<td>3–7</td>
</tr>
<tr>
<td>Considering all physician visits</td>
<td></td>
<td>3</td>
<td>2–5</td>
<td>1</td>
<td>1–2</td>
<td>2</td>
<td>1–3</td>
<td>3</td>
<td>2–4</td>
</tr>
<tr>
<td>Considering evaluation and management visits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beneficiaries with chronic conditions, considering all physician visits†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>430,461 (25)</td>
<td>8</td>
<td>5–14</td>
<td>3</td>
<td>1–4</td>
<td>6</td>
<td>3–10</td>
<td>5</td>
<td>3–8</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>633,750 (38)</td>
<td>10</td>
<td>6–15</td>
<td>3</td>
<td>1–5</td>
<td>7</td>
<td>4–11</td>
<td>6</td>
<td>4–8</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>40,086 (3)</td>
<td>11</td>
<td>7–16</td>
<td>3</td>
<td>2–5</td>
<td>8</td>
<td>5–12</td>
<td>6</td>
<td>4–9</td>
</tr>
<tr>
<td>No. of conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–2</td>
<td>257,471 (13)</td>
<td>3</td>
<td>2–5</td>
<td>1</td>
<td>1–2</td>
<td>2</td>
<td>1–3</td>
<td>2</td>
<td>1–3</td>
</tr>
<tr>
<td>3 or 4</td>
<td>451,774 (24)</td>
<td>5</td>
<td>3–7</td>
<td>2</td>
<td>1–3</td>
<td>3</td>
<td>2–5</td>
<td>3</td>
<td>2–5</td>
</tr>
<tr>
<td>5 or 6</td>
<td>448,855 (25)</td>
<td>7</td>
<td>5–10</td>
<td>2</td>
<td>1–3</td>
<td>4</td>
<td>3–7</td>
<td>4</td>
<td>3–6</td>
</tr>
<tr>
<td>≥7</td>
<td>629,354 (38)</td>
<td>11</td>
<td>8–16</td>
<td>3</td>
<td>2–5</td>
<td>8</td>
<td>5–12</td>
<td>7</td>
<td>5–9</td>
</tr>
</tbody>
</table>

- Those with ≥7 diseases could see 16+ physicians per year

Pham, H. et al. Care Patterns in Medicare and Their Implications for Pay for Performance NEJM 2007;356:1130-39.
Physician Supply and Demand for Care

- More specialists than generalists in the US
- Annual visits per generalist exceeds annual visits per specialist
- Access challenges exist for both primary and specialty care

Physician Supply and Demand Through 2025: Key Findings
Total Professionally Active Physicians.. KFF.org http://kff.org/other/state-indicator/total-active-physicians/
Primary-Specialty Care Interface

• The primary-specialty care interface is key to delivering high value care yet is beset by several challenges
Primary-Specialty Care Interface

- PCPs and specialists often report not receiving adequate information in the referral process
- Disagreement on appropriateness of referrals
- Half of specialty visits are for routine care
- $\frac{3}{4}$ of specialty visits \rightarrow a return visit

Primary-Specialty Care Interface

- Increased use of specialty care can diminish effective care coordination and role of PCPs
- PCPs value direct, personal interaction with specialists
- PCPs best as coordinators and collaborators not as competitors or gatekeepers to specialists
- Medical errors, inefficient testing, delayed treatment, lower value and costlier care
The Key Question

• How can we deliver specialty expertise and care to a population with increasing demand, while leveraging the benefits of primary care with respect to continuity, and achieve improved outcomes, better care experience, and lower costs?
Primary Care Medical Home (PCMH)

• Key Features
 • Comprehensive
 • Patient-Centered
 • Coordinated
 • Accessible
 • Quality and Safety

• PCMH associated with improved quality and some decreased utilization and cost

• Small positive effect on patient experiences and small to moderate positive effects on preventive care services

Medical Neighborhood

• Key Features
 • Bidirectional communication, coordination, integration with PCMH
 • Appropriate and timely consultations and referrals
 • Efficient, appropriate, and effective flow of patient information
 • Guide determination of responsibility in co-management situations
 • Support patient-centered care, access, and high quality/safety
 • Support PCMH PCP as central provider

Medical Neighborhood
Medical Neighborhood

<table>
<thead>
<tr>
<th>Category</th>
<th>Proposed Measure</th>
<th>Data Source</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referral demand</td>
<td>PCP referral volume/rate</td>
<td>Electronic referral tracking</td>
<td>Can measure absolute volume or rates of referral normalized for patient panel size</td>
</tr>
<tr>
<td></td>
<td>"Preconsult triage" volume</td>
<td>Electronic preconsult requests</td>
<td>Preconsult triage volume should increase with integration of neighborhood model</td>
</tr>
<tr>
<td>Leakage</td>
<td>Administrative claims</td>
<td></td>
<td>Medical neighborhood implementation should reduce leakage</td>
</tr>
<tr>
<td>Referrals avoided</td>
<td>Electronic preconsult requests</td>
<td></td>
<td>Percentage of preconsult triage requests that are resolved without an in-person referral</td>
</tr>
<tr>
<td>Communication/</td>
<td>Referral appropriateness</td>
<td>Referral-level specialist</td>
<td>Implementation of "preconsult exchange" should make referrals more appropriate</td>
</tr>
<tr>
<td>referral quality</td>
<td>Referral preparedness</td>
<td>surveys</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comanagement perception</td>
<td>Referral-level PCP and</td>
<td>Measuring both PCP and specialist perceptions of management plans for the same referrals is an</td>
</tr>
<tr>
<td></td>
<td></td>
<td>specialist surveys</td>
<td>important measure of adequate communication</td>
</tr>
<tr>
<td></td>
<td>Patient care coordination perception</td>
<td>Patient satisfaction surveys</td>
<td>Medical neighborhood should improve patient experience navigating care across settings</td>
</tr>
<tr>
<td></td>
<td>Procedural yield</td>
<td>Administrative claims</td>
<td>Medical neighborhood should increase proportion of referrals resulting in procedure in the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>following 6-12 mo</td>
</tr>
<tr>
<td>Access to care</td>
<td>Time to next new patient appointment</td>
<td>Scheduling system</td>
<td>Preconsult triage can reduce demand for full consults, opening up access; improved triage of</td>
</tr>
<tr>
<td></td>
<td>No. of new patient consults per</td>
<td></td>
<td>referrals to right specialists can reduce inefficiency and wasted visits</td>
</tr>
<tr>
<td></td>
<td>specialist FTE</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Percent completed referrals</td>
<td>Scheduling database +</td>
<td>Medical neighborhood should improve no-show rate as a result of better scheduling coordination</td>
</tr>
<tr>
<td></td>
<td></td>
<td>electronic referral tracking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCP perceived access</td>
<td>Physician survey</td>
<td>PCP perceptions are as important as actual access data because perceptions can lag service</td>
</tr>
<tr>
<td></td>
<td>Physician satisfaction</td>
<td></td>
<td>improvements and affect leakage</td>
</tr>
<tr>
<td></td>
<td>PCP and specialist satisfaction</td>
<td></td>
<td>Overall satisfaction with referral and preconsult process</td>
</tr>
</tbody>
</table>

Co-Locating Specialists in Primary Care

• An approach to address primary-specialty care interface challenges

• Co-location as a feature of advanced integration

• Facilitate clinical decision support, information transfer, referral quality, referral tracking

Effect of Co-Location Model

Co-located Specialists in Primary Care

· Improved Communication
· Knowledge Exchange

Improved Quality Care

· Enhanced Care Coordination

Improved Access

· Efficient testing & referrals

Improved Outcomes

· Improved Care Experience

Decreased Cost

The IHI Triple Aim

Population Health

Experience of Care
Per Capita Cost
Systematic Review and Meta Analysis

Co-located Specialty Care within Primary Care Practice Settings
Systematic Review / Meta Analysis

- Physically co-located specialists
- Outcome measures
 - Patient satisfaction
 - Provider satisfaction
 - Healthcare access and utilization
 - Clinical outcomes
 - Cost
- 1,620 citations, 22 meeting inclusion
Systematic Review / Meta Analysis

Results

- **Patient Satisfaction**
 - improved
- **Provider Satisfaction**
 - improved
- **Total Visits**
 - increased
- **Waiting Time**
 - decreased
- **Hospitalization**
 - no effect
- **Referral rate**
 - decreased

- **4 studies, OR 2.04**
 (95%CI 1.04, 3.98) $I^2=93.8\%$
- **2 studies, OR 6.49**
 (95%CI 4.28, 9.85) $I^2=95.5\%$
- **5 studies, OR 1.94**
 (95%CI 1.13, 3.33) $I^2=96.5\%$
- **3 studies, OR 0.20**
 (95%CI 0.10, 0.41) $I^2=80.5\%$
- **3 studies, OR 0.75**
 (95%CI 0.53, 1.07) $I^2=46.5\%$
- **1 study OR 0.28**
 (95%CI 0.21, 0.37) $I^2=NA$
Systematic Review / Meta Analysis Results

• **Clinical outcomes** – *mixed*
 • Improvement in quality of life and in some diabetes related measures

• **Cost** – *decreased*
 • Lower costs to patient and per member per month
Systematic Review / Meta Analysis Summary

• Co-located specialty care in primary care settings may support aims of high value care
 • Improved patient & provider satisfaction, reduced wait time, specialty referrals, cost
 • Increased primary care visits
 • Variable impact on outcomes

• Limitations
 • Few studies, limited quality of studies, and high risk of bias
 • Heterogeneity of studies
Integrated Community Specialists (ICS)

Mayo Clinic – Employee and Community Health Practice
AN INTERNATIONAL NETWORK
MAYO CLINIC CARE NETWORK
Employee and Community Health (ECH)
Employee and Community Health (ECH)

- Multispecialty primary care practice
 - Community Pediatric & Adolescent Medicine
 - Family Medicine
 - Primary Care Internal Medicine

- 101 PCPs at main clinic site (Baldwin), 74 PCPs at 4 additional sites plus resident trainees

- 152,000 patients, 50% employees and dependents

- Salaried physicians
ECH High Value Care Programs

- Anticoagulation Clinic and Home INR
- Community Health Workers
- Adult Care Coordination
- Care Transitions Program
- Palliative Care Homebound Program
- Integrated Community Specialists (ICS)
Previous State

Traditional Referral Practice

Suboptimal referring/return

“Churn” and secondary referrals disconnecting PCP

Specialty Practice #1

Specialty Practice #2

Patients

ECH Practice

Referrals bypassing PCP

ED/Hospital
Previous State

Goal to improve coordinated care and eliminate referral/flow patterns that fragment and decrease value of care delivered.

Tradational Referral Practice

- Specialty Practice #1
- Specialty Practice #2

Patients → ECH Practice → Specialty Practice #1 → Specialty Practice #2
ICS Model

- Proactive (upstream) engagement with patients and subpopulations in the community to improve health
- Shift of patients back to ECH PCMH/N improving continuity and long-term coordination
- More efficient referral
- Reduce “churn”, secondary referrals and redirect patients back to PCMH/N

ICS

Specialty Practice #1

Specialty Practice #2

ECH Practice

PCMH/N

Patients

Traditional Referral Practice

More efficient referral
ICS Model

- Co-located physicians
 - Behavioral Health, Cardiology, Neurology, Gastroenterology
- Co-located advanced practice providers (NP/PA)
 - Gynecology, Orthopedics
- Virtual – Telemedicine
 - Dermatology, Ophthalmology
ICS Model

• Stepwise consultative approach
• Curbside
 • Staffed pager
 • Synchronous/urgent discussion
• Electronic consultation
 • EHR inbox or E-mail
 • Non-urgent or chart review
• Face-to-face visit
ICS – Neurology

1. Consult Typology
2. Utilization
ICS – Neurology Pilot Data

• Observational pilot
• 0.6 FTE neurologist co-located in main site
• 3 month survey
• Prospective data on consecutive consults
• Follow up (4-8 months)
ICS – Neurology Pilot Data

• 359 unique patients
• Curbsides – 179
• e-Consults – 68
• Face to face visits – 182

ICS – Neurology
Pilot Data

Disease category of referrals, by patient (N=359)

- Headache (33%)
- Seizure/spells (14%)
- Cerebrovascular (9%)
- Movement disorder (8%)
- Radiculopathy (8%)
- Dizziness (8%)
- Non-neurological disorder (7%)
- Mononeuropathy (7%)
- Other (6%)

More than one diagnosis may be included for a single patient

ICS – Neurology Pilot Data

<table>
<thead>
<tr>
<th>General Consultation Questions</th>
<th>Curbside Consultations (N=179)</th>
<th>Electronic Consultations (N=68)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing Recommendations</td>
<td>110 (61%)</td>
<td>23 (33%)</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>102 (57%)</td>
<td>24 (35%)</td>
</tr>
<tr>
<td>Pharmacologic Treatment Recommendations</td>
<td>96 (53%)</td>
<td>27 (40%)</td>
</tr>
<tr>
<td>Indication for FTF Neurology Consultation</td>
<td>58 (32%)</td>
<td>16 (24%)</td>
</tr>
<tr>
<td>Neuroimaging Review</td>
<td>38 (21%)</td>
<td>23 (34%)</td>
</tr>
<tr>
<td>Non-Pharmacologic Treatment Recommendations</td>
<td>22 (12%)</td>
<td>4 (6%)</td>
</tr>
</tbody>
</table>

ICS – Neurology Pilot Data

<table>
<thead>
<tr>
<th>Test Modality</th>
<th>Tests Avoided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain MRI</td>
<td>39 (33%)</td>
</tr>
<tr>
<td>EMG</td>
<td>50 (89%)</td>
</tr>
<tr>
<td>Cervical MRI</td>
<td>24 (92%)</td>
</tr>
<tr>
<td>MRA or CTA Head and Neck</td>
<td>18 (90%)</td>
</tr>
<tr>
<td>Lumbar MRI</td>
<td>11 (100%)</td>
</tr>
</tbody>
</table>

ICS – Neurology
Pilot Data – Referral Volumes

ICS – Neurology Comparison Study

• Retrospective, propensity score matched case-control study
 • Patients referred to ICS Neurology for face-to-face consultation vs. patients referred to non-co-located neurology
 • 12 month follow up

• Outcomes
 • Diagnostic testing
 • Visits – outpatient, ED, inpatient
 • Appointment wait time
ICS – Neurology Comparison Study

• ICS Neurology associated with reduced:
 • Subsequent referral for visits (p=0.001)
 • Brain MRI (p=0.0004)
 • EMG (p=0.009)

• No difference
 • ED visits
 • Hospitalizations
 • Appointment wait time

• Curbsides and e-consults not captured
ICS – Cardiology

1. Utilization
2. PCP satisfaction
3. Patient satisfaction
ICS Cardiology Model

- 1.0 FTE (5 staff)
- Scheduled and unscheduled time
 - Face-to-face consultation (6-8)
 - e-Consult (1)
 - Phone calls with PCPs (10)
 - EHR messages (10)
 - ED triaging (2)
Referrals to Cardiology

PCP Referred Patients to Cardiology

- ICS
- DMC

ECH Referred
Referrals to Cardiology

Non-PCP Referred Patients to Cardiology

- 4th Qtr 2013
- 1st Qtr 2014
- 2nd Qtr 2015
- 3rd Qtr 2016
- 4th Qtr 2017

Internal Provider

ICS
DMC
ICS – Provider Satisfaction

• Surveyed ECH primary care providers
• Pre: 98/160 (61.3% response rate)
• Post: 109/171 (63.7% response rate)
• Paired t-test analysis
Access and Communication

- Easy access
- Timely appointment
- Addresses reason for referral
- Clear POC communication

Pre-ICS vs. Post-ICS
PCP at the Center of Care Plan

- Transitions care back to PCP
- Clear POC when to re-refer
- Referral results in duplicate testing
- Communication with PCP before secondary referral

Pre-ICS vs. Post-ICS
Knowledge Transfer and Satisfaction

- Transfer of knowledge
- Overall satisfaction

Pre-ICS | Post-ICS

- Chart showing comparison between Pre-ICS and Post-ICS for transfer of knowledge and overall satisfaction.
Patient Satisfaction

• 500 patients pre and post implementation
• Approximately 60% response
• High satisfaction at baseline
Patient Satisfaction

Accessibility / Convenience
Time Spent with Doctor
Financial Aspects
Communication
Interpersonal Matter
Technical Quality
General Satisfaction

* p(<0.05)

Pre-Intervention
Post-Intervention
Final Notes

• Co-located ICS implemented at largest primary care practice site

• Small core of specialists aligned with model

• Financial alignment of staff and reimbursement
Summary

- Multiple trends and challenges necessitate development of high-value care models
- Co-located specialty care models have potential to provide triple aim benefits and shift care back to the PCMH
- Large primary care practice sites
- Need for staff and financial alignment
- Potential unintended effects during transformation phase
Acknowledgements

• Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery
• Population Health Scholar Program
• Jon Ebbert, MD, MSc
• Sidna Tulledge-Scheitel, MD, MPH
• Sarah Crane, MD
• Bob Jacobsen, MD
• Jennifer St. Sauver, PhD
• M. Hassan Murad, MD, MPH
• Khaled Mohammed, MBBCh, MPH
• Bijan Borah, PhD
• Sue Visscher, PhD
• Lila Finney-Rutten, PhD
• Mark Wieland, MD
• Paul McKie, MD
• Nathan Young, DO
• Lindsay Philpot, PhD
• Kristi Swanson, MS
• Priya Ramar, MPH
• Deb Jacobson, MS
• Chun Fan
• Pavithra Bora
• Qusay Haydour, MD
• Ramona DeJesus, MD
• Wigdan Farah, MBBS
• Stephanie Pagel
• Gail Bierbaum
• Kathleen Mallmann
Thank you

elrashidi.muhamad@mayo.edu

LET’S GO OILERS!