How do we decide where to focus surveillance?

David M. Patrick, MD, FRCPC, MHSc

Surveillance

- Information for Action
- Ongoing
- Closes the loop by providing reports to those responsible for action

The most comprehensive systems (e.g. EARS-Net) combine the following:

- Population-based human AMU use metrics from communities and hospitals
- AMU metrics by commodity from animal agriculture
- AMR trends from a list of indicator organisms from community and hospital settings
- Trends in rates of key nosocomial infections
- AMR trends from sampling within agriculture and retail food settings
- Reference microbiology capabilities to characterize new strains
- Most systems are weak on burden of illness

Systematic
Review –
Program
identification

Canadian Expert Surveys Select
Program
Evaluation
and Analysis

Review of Previous Reports

Saxinger, Grant, Patrick et al.

ANIMAL

In Canada

- AMU surveillance is improving thanks to CIPARS/IMS collaboration.
- Data on population based antibiotic use (over time, by province and by drug class) are becoming available.
- Similar data from the hospital sector has been largely missing, though efforts by CIPARS and CNISP may help to fill this gap over the next year.
- There are comparatively few data available on AMU in agriculture or companion animal practice.

AMR In Hospitals

- AMR surveillance from hospitals benefits from CNISP output. The focus has been on illness or colonization event surveillance for a discrete list of strains (e.g. MRSA, VRE, C. difficile, ESBLs).
- There are ongoing discussions about the potential for broader isolate-based surveillance that would track trends in resistance for a large list of organisms.

Community

- There is fairly large gap in <u>representative</u>, population-based data on trends in resistance in community based infections. The data exist at laboratory level and there is much potential in the analysis of aggregated laboratory data.
- AMR surveillance in agriculture and companion animal practice has limited coverage. Exceptions include focused surveillance on a few enteric organisms.

		CNISP		CIPARS
	hospitalized patients		If we just look at	
Populations of Interest	community patients		Human AMR data	
	children		collected under a	
	Elderly			
	aboriginal populations		Public Health	
Funding Source(s)	populations	PHAC	mandate,	PHAC
Organisms of Interest	C. difficile		we can see that	
	E. coli		notional Canadian	
	E. faecium		national Canadian	
	H. influenzae		programs, which are	
	K. pneumoniae/oxyt			
	oca		robust and well	
	N. gonorrhea		functioning systems	
	P. aeruginosa		functioning systems	
	S. aureus		for their designated	
	S. pneumoniae		function, do not	
	S. pyogenes			
	Salmonella		address evolving	
	MRSA VRE			
	CRE		antimicrobial	
	ESBL		resistance	
	other organisms			

Our Lead Recommendations

- A nationally coordinated program of surveillance.
 - (PHAC cannot do this alone but can provide conceptual oversight, surveillance standardization and work toward a comprehensive national annual report).
- Secure funding for our strongest assets (CNISP/CIPARS,NML)
- Work with individual lab networks toward a system of susceptibility data warehousing or reporting that allows for much broader inference about the burden of illness at population level.

Recommendations (Cont)

- Work at hospital, health authority, provincial and national levels toward better hospital utilization data directly linked to stewardship programs
- Integrate annual reports of findings in the human and agricultural sectors.
- Close the loop by funding research through CIHR and funding public and professional education programs to support more logical use of antibiotics.

Epidemiological Analysis in Resistance "Person, Place, Time"

- The antibiogram is just a start.
- "Person" by age group, by gender
- "Place" by Province, Regional Health Authority
- "Time" Consistent tracking of trends over time (years but monthly data have huge additional value)
- By species, by specimen type, by syndrome
- Correlations link use and resistance data

Figure 9 - Proportion of Escherichia coli urinary isolates non-susceptible to ciprofloxacin by age of patient (2007-2012) Source: BC Biomedical Laboratories

Utilization Rates – Not Numbers

NUMERATOR

- Prescriptions
- Defined Daily Doses
- Days of Therapy

DENOMINATOR

- Population for community
- Patient bed days / admissions for hospital

<u>Standardized</u> rates (age, acuity mix etc)

Person, Place and Time Apply Here Too

Patient Outcomes

Hospitals:

- Facility/ward specific rates of infection with CDI, ESBL,
 MRSA etc
- ARO specific mortality
- 30 day readmission rates with infection

• Community:

- Patient visits for discrete infections at population level (UTI, abscess)
- DOT or discrete prescriptions per infection episode

Process In Stewardship

- Time to appropriate therapy
- Adverse reactions
- Excessive or inadequate therapy
- Day 3 Bundle "Niwa et al"
- Costs

Niwa T., Shinoda Y., Suzuki A., Ohmori T., Yasuda M. *Outcome measurement of extensive implementation of antimicrobial stewardship in patients receiving intravenous antibiotics in a Japanese university hospital*. International Journal of Clinical Practice, 2012. **66**(10): p. 999-1008.

Agriculture, Veterinary Medicine

- Just as important
- Large barriers to measurement

Summary - We Need

- Population-based human AMU use metrics from communities and hospitals
- AMU metrics by commodity from animal agriculture
- AMR trends from a list of indicator organisms from community and hospital settings
- Trends in rates of key nosocomial infections
- AMR trends from sampling within agriculture and retail food settings
- Reference microbiology capabilities to characterize new strains
- Relevant metrics for burden of illness