Designing Interventional Studies for Evaluation of ARO Control Strategies

Mark Loeb MD
McMaster University
loebm@mcmaster.ca

Canadian Consensus Conference on Surveillance and Screening for AROs, June 18, 2014

Randomization

- Assigned treatment will be statistically independent of any covariate at baseline in the population
- The distribution of any measured or unmeasured covariate will be, on average, balanced at baseline
- Builds a strong foundation for causal inference

Campbell and Stanley 1963

	· · · · · · · · · · · · · · · · · · ·												
		Sources of Invalidity											
	_	Internal								External			
	History	Maturation	Testing	Instrumentation	Regression	Selection	Mortality	Interaction of Selection and Maturation, etc.	Interaction of Testing and X	Interaction of Selection and X	Reactive Arrangements	Multiple-X Interference	
Pre-Experimental Designs: 1. One-Shot Case Study X O	_	_				_	_			_			
2. One-Group Pretest- Posttest Design O X O	-		-		?	+	+	<u></u>	_	-	?		
3. Static-Group Comparison X 0 O	+	?	+	+	+	_		-		_			
True Experimental Designs: 4. Pretest-Posttest Control Group Design R O X O R O O	+	+	+	+	+	+	+	+	-	?	?		

What is a Cluster RCT?

- A randomized controlled trial where the units being randomized are not individuals but they are clusters
- Based on premise selection bias played no role in assignment of interventions
- Balancing of baseline characteristics between groups

Why do a Cluster RCT?

- Intervention must be directed at a unit > larger than individual e.g. hospital or unit on the hospital
 - contamination likely i.e. need to keep groups separate
 - "ecologic" type of question e.g. antibiotic use
 - health services question (policy)
 - feasibility
- Intervention at the level of cluster is part of the hypothesis e.g. herd immunity

Distribution of Hutterite Colonies Alberta, Saskatchewan & Manitoba

Flow Diagram of Trial

Loeb, M. et al. JAMA 2010;303:943-950.

Inference

- There are two levels of inference in a cluster RCT
 - cluster level and the individual level
- It is key to indicate explicitly the level at which the interventions were targeted, hypothesis generated, outcomes measured, randomization done

What is the impact of Cluster Randomization on design and analysis?

- Challenge is that inferences are often intended to apply at the individual level while randomization is at the level of the cluster
- Lack of statistical independence between individuals invalidates standard approaches to sample size and analysis
 - underpowered studies and spurious claims of association

Sample size

Calculate sample size needed for individual trial

Variance inflation factor is given by the formula: 1 + (m − 1)ICC
 m= size of cluster

•The ICC refers to <u>btw gr variance</u> btw + wth grp variance

What is the Hypothesis?

Risk Difference or Relative Risk

Eligibility Criteria

- Must be set at the cluster and the individual levels
- Similar considerations given as per individual level RCTs
 - response to intervention
 - generalizability

Most Commonly Used Designs

- Completely randomized
- Matched-pair
- Stratified

Factors that are the same as other RCTs

- Clearly identify the primary outcome
- Select a responsive intervention
- Select a realistic minimum effect size
- Allocation concealment
- Include as much blinding as possible
- Select rigorous measurements
- Do a pilot study

Common Problems

- Contamination
- Uncertainty in ascertainment
- Over reliance on medical records or administrative databases for outcome assessment
- Selection bias
- Lack of appropriate consent procedures
- Unequal baseline rates
- Clusters that do not wish to be randomized

References

- Donner and Klar. Design and Analysis of Cluster Randomized Trials in Health Research (Wiley).
- Kerry and Bland. Stat Med 2001; 20:377-390.